An Orc6 tether mediates ORC binding site switching during replication origin licensing
2025-05-13, bioRxiv (10.1101/2025.05.09.652650) (online) (PDF), and (?)
During origin licensing, the origin recognition complex (ORC) loads two Mcm2-7 helicases onto DNA in a head-to-head conformation, establishing the foundation for subsequent bidirectional replication. Single-molecule experiments support a helicase-loading model in which one ORC loads both Mcm2-7 helicases at origins. For this to occur, ORC must release from its initial Mcm2-7 and DNA binding sites, flip over the helicase, and bind the opposite end of the Mcm2-7 complex and adjacent DNA to form the MO complex. Importantly, this binding-site transition occurs without ORC releasing into solution. Using a single-molecule FRET assay, we show that the N-terminal half of Orc6 tethers ORC to the N-terminal tier of Mcm2-7 (Mcm2-7N) during ORC\'s binding-site transition. This interaction involves both the folded Orc6 N-terminal domain (Orc6N) and the adjacent unstructured linker and forms before ORC releases from its initial Mcm2-7 interaction. The absence of this interaction increases the rate of ORC release into solution, consistent with a tethering function. CDK phosphorylation of ORC inhibits the tethering interaction, providing a mechanism for the known CDK inhibition of MO complex formation. Interestingly, we identify mutations in the Orc6 linker region that support MO complex formation but prevent double-hexamer formation by inhibiting stable second Mcm2-7 recruitment. Our study provides a molecular explanation for a one-ORC mechanism of helicase loading and demonstrates that Orc6 is involved in multiple stages of origin licensing.
This article has not yet been included in any curations.
Comments
There are no comments on this article yet.
You need to login or register to comment.